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ABSTRACT 

Base pressure measurements were made on sharp and hemispherically 

blunted 9 cones at Mach numbers from 3.50 to 9.20.  The tests were 

carried out in the Ballistic Research Laboratories' Supersonic and 

Hypersonic Wind Tunnels at Aberdeen Proving Ground, Maryland.  The data 

obtained are compared to experimental data and to data from semiempirical 

analyses from other sources.  An empirical correlation for the base 

pressure data is presented.  The relative contributions of base and form 

drag to total drag are compared. 
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DEFINITION OF SYMBOLS 

CL Drag coefficient = —? 
U CJ, b 

D . Drag force 

k Constant used in base pressure coefficient correlation equation 

Ü Model wetted length 

M^ Free stream Mach number 

p Model base pressure (average of k  taps) 

P, Base pressure coefficient =   b        * q 

p Cone surface pressure  (measured 0.60 in. ahead of base) 

p Free stream static pressure 

q Dynamic pressure = •pPV 

r Nose radius of blunted cone 

R Base radius of cones 

ReT Reynolds number based on wetted length and local conditions at outer 
edge of boundary layer just ahead of base of body 

Rero Reynolds number based on wetted length and free stream conditions 

S Model reference area = 7«069 square inches 

V Free stream air velocity 

p Mass density 





1. INTRODUCTION 

While there has been much interest in the subject of base pressure in the 

past several years, there has been a noticeable lack of experimental data at 

hypersonic velocities. Many investigators have obtained a wealth of data at 

velocities up to Mach 5, and there have been several semiempirical theories 

advanced; however, little has been done above Mach 5. 

The present limited investigation was initiated in order to begin to fill 

the void of hypersonic base pressure data, to evaluate our ability to accu- 

rately measure low pressures, to determine the effect of Mach number, Reynolds 

number, and boundary layer trip devices on base pressure, and to compare our 

test results with other experimental data, at least at the lower Mach numbers. 

The present tests were considered a success, and further tests on bodies 

of different shapes are being planned. 

2. MODELS AND APPARATUS 

2.1 Wind Tunnels 

The tests were conducted in Supersonic Wind Tunnel No. 1 and Hypersonic 

Wind Tunnel No. k.    The supersonic tunnel is of the continuous flow, closed 

circuit, variable density type and has a flexible nozzle for obtaining a range 

of Mach numbers from I.50 to 5*00. The test section size is 13 inches wide by 

15 inches high. The hypersonic tunnel is of the continuous flow, open jet, 

closed circuit, variable density variety. It has interchangeable axisymmetric 

nozzles for Mach numbers 6.0, 7«5> sxid.  9«2 with exit diameters of Ik.6,  I5.6, 

and I8.7 inches, respectively. A combustion and an electric heater provide 

stagnation temperatures up to i960 Rankine--sufficient to prevent air lique- 

faction. The specific humidity was maintained at a value less than 0.0002 lb 

of water vapor per pound of air for all tests. Further information on the 

tunnels may be found in Ref. 1. 

2.2 Instrumentation 

The base pressures were transmitted to four 0-1 psi Statham absolute 

pressure transducers which were located outside the test section. The sensi- 

tivity of the transducers was increased by using a supply voltage of 6.0 volts 

rather than the design voltage of 3.5 volts. The transducers then had a range 



of 0-0.6 psia with an accuracy of better than ±0.25 percent of their range. 

The cone pressure was measured on a 0-5 psi Statham absolute pressure trans- 

ducer whose sensitivity had been increased to give it a 0-3 psi range. Its 

accuracy was also better than +O.25 percent of its range. The transducers 

were zero referenced to a vacuum system which measured less than 0.025 mm Hg 

at all times. 

The electrical signals from the transducers were converted by the auto- 

matic data readout system to proportional digital readings which -were typed on 

data sheets and punched in code on a tape. A schlieren system with camera 

provided continuous visual indication, as well as photographs, of the flow 

conditions in the test section. Spark shadowgraph photos were also taken., 

£,3 Medels 

The models tested were sharp and hemispherically blunted 9 half angle 

cones. They were tested both with and without a square trip ring of height 

and width 0.050 inch, which had an inside diameter of I.25 inches. The pur- 

pose of the trip ring was to artificially induce a turbulent boundary layer 

on the model. The sharp nose model was 9*^71 inches long and had a 3*000-inch 

base diameter. The blunt nosed model used the same base and was 7-160 inches 

long. It had a nose radius of 0.^29 inch. There were four base pressure taps 

located on a vertical diameter at varying distances from the model axis. One 

cone surface pressure tap was located on the top of the model, 0.600 inch from 

the base. The model physical characteristics are illustrated in the drawing, 

Figure 1. 

3.  TEST PROCEDURE 

With the model installed on the tunnel centerline, flow was established 

at the desired Mach number, but at reduced stagnation pressure and tempera- 

ture. Next, pressure and temperature were increased to their proper value 

for the test, and schlieren and shadowgraph photographs were taken. Then, 

pressure data were taken at one minute intervals until there was no notice- 

able change in pressure with time. After that, tunnel flow conditions were 

changed and the process repeated. Data were taken at zero angle of attack 

only. 
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k.    DATA REDUCTION 

4.1 Procedure 

The .raw numerical data from the typed data sheets were reduced to gage 

pressure by using the measured transducer calibration constants. The refer- 

ence pressure was then added to these values to yield absolute pressures. The 

four base pressure readings were averaged arithmetically to yield an average 

base pressure, p, . This pressure was reduced to coefficient form by sub- 

tracting from it the test section static pressure, p^, and then dividing the 

difference by the dynamic pressure, q. The local Reynolds number, Rex,, was 

obtained by determining the local Mach number at the base of the model and 

then using Chart 25 in NACA Report 1135 > using stagnation conditions in the 

case of the sharp cone and total conditions behind a normal shock in the case 

of a blunt cone. 

k.2    Accuracy 

The maximum deviation of any of the measured base pressures from the 

average values does not exceed ±0.002 psi, which is ±0.25 percent of the 

range  of the transducers.     The  cone  surface pressure  readings were  reduced 

in  a similar manner and were  also found, to be  consistent with transducer 

accuracy.     The maximum error in base pressure   coefficient  due to transducer 

inaccuracy is +_;0025.     The  range  of pi measured was   from 0.0035 to O.165  psia. 

5. PRESENTATION OF DATA 

The data from the wind tunnel tests are presented in several different 

ways in order to better illustrate certain trends, and to compare with the 

theoretical and experimental work of others. 

In Figs. 2-5, the base pressure coefficient, P, , is plotted as a function 

of free stream Reynolds number, Re^, based on model wetted length. Each 

figure is for a different configuration, with a curve for each Mach number. 

In Figs. 6-12, we also plot P, vs Reroj however, in these, each figure is for 

a different Mach number, with a curve for each configuration. 

In Figure 13, P, is plotted versus local Reynolds number, Re^, based on 

conditions just outside the boundary layer at the model base and the model 
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wetted length. The points plotted axe.for cases where boundary layer transi- 

tion has occurred before the model base. Each curve is for a different Mach 

number. 

Fig. Ik  shows the present data for sharp and blunt cones, without trip 

rings, plotted as a ratio of base pressure to cone surface pressure, P-v/P ,  vs 

Re]> This is compared to data of Whitfield and Potter from Ref. 2, which is 

also for flow over sharp and blunt 9 cones. Fig. 15 is similar to Fig. Ik, 

the only difference being that the present data shown are for models with the 

trip ring. It is again compared to Whitfield and Potter's data which are for 

models without boundary layer tripping devices. 

Fig. 16 shows P, plotted as a function of free stream Mach number, M^. 

The points shown are for a sharp cone with a trip ring at a free stream Rey- 

nolds number of 6 x 10 . The data are compared to a compilation by Chapman, 

found in Ref. 3, for flow over axisymmetric models with cylindrical after- 

bodies and data for a j/k power law body from Ref. k by Reller and Hamaker. 

In Figs. 17 and 10, drag coefficient is plotted against Mach number for 

the sharp and blunt cones, respectively. The contributions of base and wave 

drag are compared. The contribution of friction drag is small and has been 

neglected. 

Fig. 19 shows the ratio of base pressure to free stream static pressure 

plotted as a function of free stream Mach number. An "approximate estimate" 

from Ref. 2 for a 9 blunt cone with r/R =0.3 and Re^ ^ kO  x 10 is compared 

to present data where the cone angle is 9 >  r/R = 0.286 and Re-^ is sufficient 

to insure a turbulent boundary layer on the model. 

6. DISCUSSION OF RESULTS 

In Figs. 2-5, we see the effect of free stream Reynolds number and Mach 

number on the base pressure coefficient for the different configurations 

tested. We can see that, with increasing Reynolds number, the base pressure 

coefficient decreases (becomes more negative), and the base drag increases. 

This is due to the fact that at the higher Reynolds number the boundary layer 

becomes turbulent on the body and improves the mixing in the base region. 
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The base pressure coefficient increases with increasing Mach number, and the 

base drag therefore decreases. 

The. difference between the sharp and blunt cones and the effect of the 

boundary layer trip ring can best be seen in Figs. 6-12. Here we see that 

transition and the values of P characteristic of turbulent boundary layers 

occur at lower values of Rea, for the models with the trip ring. We may also 

note that once turbulent flow on the model is obtained, there is very little 

dependence on whether transition occurred naturally or by means of the trip 

ring. This is more evident in the case of the sharp cone since, at some of 

the Mach numbers tested, it was not possible to obtain turbulent flow on the 

blunt cone without the trip ring. 

Fig. 13, which shows P, plotted against local Reynolds number, shows 

that, for the turbulent data, an empirical correlation between the sharp and 

blunt cones is possible. For the present tests, the equation 

-Pb = O.CKA83 log ReL + k 

best describes the data, where "k" varies with Mach number as follows: 

. M k 

5.50 0.0643 

J+.00 0.0M*5 

4.50 0.0289 

5.00 O.0158 

6.00 0.0033 

7.50 -0.0102 

9.20 -O.0157 

Fig. Ik  shows the ratio of base pressure to cone pressure plotted as a 

function of local Reynolds number for sharp and blunt cones without trip rings. 

In addition to the present data, those of Whitfield and Potter, found in Ref- 

erence 2, are also plotted. From the discussion of Figures 2-5 and from 

Figure Ik,  it is clear that local Reynolds numbers for the present tests were 

not high enough to produce a turbulent boundary layer over the model in the 

majority of cases. In the cases where there were turbulent boundary layers 

in both the present tests and those of Ref. 2, agreement between the two sets 
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of data is fairly good. The difference is primarily that of transition Rey- 

nolds number. This can he explained by the fact that model surface roughness 

and tunnel turbulence level, which are undoubtedly different for the two sets 

of data, have a significant effect. 

In Fig. 15, which is similar to Fig. Ik,  the present data for the models 

with the trip ring are compared to those of Whitfield and Potter without a trip- 

ping device. The present data seem, to level off to values fairly close to 

the higher Reynolds number data of Whitfield and Potter. Little more can be 

said about this data, due to the very large scatter. This scatter is believed 

to be due to the inability to obtain very high Reynolds numbers. Thus, it 

fixes transition well forward of the base on the model. 

Fig. l6 shows base pressure coefficient as a function of Mach number. 

Present data on the sharp cone with trip ring, at  Re-^ of 6 x 10 , is com- 

pared to compilations by Chapman and Love, found in Refs. 3 and 5, respec- 

tively, for axisymmetric models with cylindrical afterbodies. Data from 

Ref. h,  by Reller and Hamaker on a model with a 3/4 power law shape, is also 

shown. The present data compares quite well with the Chapman and Love curve 

at Mach 5«0 and above. Below Mach ^.0,  there is good agreement between 

present tests and the work of Reller and Hamaker. The difference between the 

present data and the Chapman and Love compilation may be explained by the fact 

that all of their data were for models with cylindrical afterbodies. The base 

pressure on a cone would naturally be lower than that on a model with a cylin- 

drical afterbody. The close agreement between the present data and the data 

of Reller and Hamaker on the 3/4 power law body serves to illustrate this 

point. 

Figs. 17 and 18 show the drag contributions for the sharp and blunt cones, 

respectively. Friction drag was found to be small and was considered negli- 

gible. The pressure, or "fore," drag contribution was calculated by inviscid 

cone theory for the sharp cone, and by modified Newtonian theory for the blunt 

cone. The base drag was obtained from the present data for turbulent flow, 

for both sharp and blunt configurations. 

For the sharp cone at M = 3«5> base drag is about 57 percent of the total 

drag, while at M = 9.2 it is only 19 percent of the total drag. In the case 
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of the blunt  cone, these percentages  are  1*1 and 7 percent,  respectively. 

Thus, we  see that  for the more  slender,  streamlined shapes, base pressure 

is extremely important. 

Figure   19 shows the  ratio of base pressure to free  stream static 

pressure plotted versus  free  stream Mach number.     Present  data for a 

blunt 9     cone with r/R = 0.286  and Re   ,   sufficiently large  for a turbulent 
J_j 

boundary layer on the model,  is  compared to  an  "approximate  estimate" made 

by Whitfield and Potter in Reference 2  for a blunt  9     cone with r/R =  0.3 

and Re    >  1(0 x 10   .     The estimate  of Whitfield and Potter was made to 
Li 

Mach 20 from data which went only to Mach 5.1, and the present data are 

in clear disagreement with it above Mach 1+.5-  At this Mach number and 

below, there is fairly good agreement between the present data and the 

estimate.  It is felt that the estimate given in Reference 2 may lead to 

erroneous conclusions if used above Mach 1+.5- 

Further investigations on hypersonic base pressures are planned, and 

it is hoped that they will reinforce the present data and conclusions. 
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